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Abstract-Static load-carrying capacities of circular rigid-plastic plates subjected to Gaussian distributions of
pressure are presented in this paper. The effects of varying the load distribution as well as the boundary
conditions are determined. Curves are presented which bound the load-carrying capacity for boundary
conditions between the ideal cases of clamped and simply supported.

INTRODUCTION

This paper presents the results of an analysis of the static load-carrying capacity of circular
rigid-plastic plates subjected to Gaussian distribution of pressure. Curves are presented which
bound the load-carrying capacity for boundary conditions between the ideal cases of clamped
and simply supported. The static load-carrying capacity of the plate is defined as that load which
produces initial plastic yielding throughout the plate with the resulting stress state satisfying the
small-deflection bending equations of equilibrium.

Historically, there have been very few published analyses of plastic plates with loads other
than point, uniform, or linear distribution. The only general distribution of load which has
received significant analytical attention is the Gaussian distribution. By varying a single
parameter, this general distribution can span the extremes of the point to uniform distribution.
This versatility was recognized by Sneddon[l] who approximated the dynamic loading of a
projectile on a thin, infinite elastic plate by a Gaussian distribution of pressure. Madden [2]
related this loading to the initial velocity distribution on a second plate located a set distance
behind a projectile-penetration first plate. The first study of this loading on a plastic plate was by
Thomson[3]. He obtained the solution of a rigid, perfectly plastic plate of material obeying the
Tresca yield condition subjected to an initial impulse of Gaussian distribution. Weidman[4], in
considering the response of simply supported circular plastic plates to distributed time-varying
loadings, presented an example case of a radial Gaussian distribution of pressure with an
exponential decay. The plate material was also rigid, perfectly plastic obeying the Tresca yield
condition. In an analysis by Hayduk[5], the plate was considered rigid, viscoplastic, obeying the
von Mises yield condition, and was subjected to either a Gaussian distribution of pressure or
impulse.

The foregoing analyses treated the dynamic response of plates to Gaussian loads. The
dynamic solution of [5] also required prior knowledge of the static load-carrying capacity because
of the linearization technique used in the dynamic analysis. This requirement provided the initial
impetus to the work reported herein.

ANALYSIS

Shown in Fig. 1 is a circular plate of radius R and thickness 2h with either simply supported
or clamped boundary conditions and subjected to a Gaussian distribution of pressure. The
pressure distribution with magnitude po at the plate center decreases radially at a rate dependent
on the magnitude of the parameter /3 in the exponential term. In the limit as /3 ~ 0 the distribution
becomes uniform over the plate and as /3 ~ 00 the distribution becomes concentrated at the
center. For a particular load distribution specified by a positive value of /3, the load-carrying
capacity of the plate is defined as the value p~ for which the equilibrium equations and the yield
function are satisfied simultaneously at all points of the plate. Since the load-carrying capacity
rather than the stress distribution is of primary interest, the solution method of Eason[6] is used
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Fig. I. Circular plate with Gaussian distribution of pressure and distributions for various values of the
parameter {3.

because the load-carrying capacity can be determined without consideration of the stress field.
The analysis following Eason[6] is briefly presented in the following paragraphs.

The small deflection equations of equilibrium for a circular plate with a Gaussian distribution
of pressure,

d (rQ) _a
2
,2 0dr + rpoe =

d
dr(rM,)-M</> = rQ

and the Hill [7] radial and circumferential bending moment relations,

M, = - Y~3)Mosin (~1f - fJ)

M</>= Y~3)Mosin (~1f + fJ)

which satisfy the von Mises yield condition,

can be combined into the single equation

(
I )dfJ Y(3)po(e-

a2
'2_ 1)

rcos 61f - fJ dr-cos fJ = 4Mo a2 .

(1)

(2)

(3)

(4)

Mois the fully plastic bending moment of the plate material and fJ is a variable defining the stress
distribution. At the center of the plate M, = M</> = Moand fJ has the value 1f12. At the edge of the
plate fJ has the value 1f16 for simple-support boundary conditions (M, = 0) or -(1f13) for clamped
boundary conditions.

Defining nondimensional parameters s = r21R 2
, F = y(3)(PoR 214Mo), and f3 = a2R 2

, eqn (4)
can be recast into the form

2 ( I ) dfJ F(l -~')s cos 61f - fJ ds - cos fJ = -73 - e . (5)
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Fig. 2. The effect of load distribution on the load-carrying capacity of simply supported and clamped circular
rigid plastic plates.

For a particular value of {3 the nondimensional central pressure magnitude, F' (value of F
corresponding to the collapse load), is found by numerically integrating eqn (5) over the range
7T /2 ~ (J ~ 7T /6 for simple-support boundary conditions or 7T /2 ~ (J ~ - 7T 13 for clamped boundary
conditions.

RESULTS AND CONCLUSIONS

The results of this numerical integration for both boundary conditions are presented
graphically in Fig. 2 where the ordinate parameter P' /7TMo is the total nondimensional
load-carrying capacity of a circular plate obtained by integrating the pressure distribution over
the plate

P' 4 l-e-/J
7TMo = \I'(3/'-{3-' (6)

The sensitivity of the load-carrying capacity to changes in load distribution over the range
0:5 {3 :5 10 is clearly exhibited by both the simple-support and clamped boundary condition cases.
For {3 = 10 the load-carrying capacity is less than half that for the uniform distribution in both
cases. From the sketches in Fig. 1, one can see that for {3 = 10 the load is almost entirely within
the central region of radius R /2. As the load becomes more and more concentrated at the center
from (3 of 50 to infinite, the load-carrying capacity P I I7TMo gradually approaches the known point
load values of 2 for the simple-support case and 41\1'(3) for the clamped case determined by
Hopkins and Wang [8]. At the other end of the load spectrum, the results for the uniform loading
({3 = 0) were in agreement with the known results of [8] - 6.51 for the simple-support case and
12.55 for the clamped case. For a general Gaussian distribution of pressure on a circular plate. the
curves in Fig. 2 bound the load-carrying capacity for all uniform and continuous boundary
conditions between the ideal cases of clamped and simply supported.

The static collapse load results presented herein should not be construed as lower bounds of
limit analysis theory because the velocity fields were not obtained. The solution is believed to be
exact because Eason's methods [6] for the uniform load case can be used to obtain corresponding
velocity fields for these Gaussian distribution cases. However, these velocity fields were not
needed for the corresponding dynamic problem [5]. The linearization technique used for the
dynamic problem required knowledge only of the static collapse load which was used to eliminate
unknown static collapse moment distributions appearing in the governing equations.
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